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Introduction

In this lecture we shall:
• Define general linear model

• Discuss model building for Simple Linear Model and Multiple
Linear Model

• Model Selection and Validation

• Variable selection including stepwise and best subset regression
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R Packages and Datasets to use
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Motivation for Modeling

• The structural form of the model describes the patterns of
interactions or associations in data.

• Inference for the model parameters provides a way to evaluate
which explanatory variable(s) are related to the response
variable(s) while statistically controlling for the other variables

• Estimated model parameters provide measures of the strength
and importance of effects.

• A model’s predicted values “smooth” the data - That is, they
provide good estimates of the mean of the response variable.
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Data for Regression Analysis
• Data for regression analysis may be obtained from

non-experimental or experimental studies.
• Observational data are data obtained from non-experimental

studies. Such studies do not control the explanatory or predictor
variable(s) of interest.

• For example, company officials wished to study the relation
between age of employee (X) and number of days of illness last
year (Y)

• Such data are observational data since the explanatory variable,
age, is not controlled.

• A major limitation of observational data is that they often do
not provide adequate information about cause-and-effect
relationships.
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Data for Regression Analysis

• Frequently, it is possible to conduct a controlled experiment to
provide data from which the regression parameters can be
estimated.

• When control over the explanatory variable( s) is exercised
through random assignments, as in the productivity study
example, the resulting experimental data provide much stronger
information about cause-and-effect relationships than do
observational data.
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Overview of Steps in Regression Analysis

Figure 1: Typical Strategy for regression analysis
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General Linear Model

• The term ‘general‘ linear model usually refers to conventional
linear regression models for a continuous response variable given
continuous and/or categorical predictors.

• Two important concepts are mainly described in linear models

• Dependent variable The outcome that our model aims to
explain usually denoted by Y

• Independent variable The variable we wish to use in order to
explain the dependent variable. Denoted by X
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Simple Linear Model

• The simple regression model can be used to study the
relationship between two variables.

• A random experiment is repeated n times under identical
conditions. For each trial i = 1, 2, ..., n the value of Xi is known
and the response Yi is recorded.

Yi = β0 + β1Xi + ϵi (1)

• In a simple linear model we have one dependent and one
independent variable.
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Deriving the OLS
• Given

Yi = β0 + β1Xi

• The sum of squared errors:

Q =
∑

ϵ2
i =

∑
(Yi − β0 − β1Xi)

• Differentiating w.r.t β0 and β1 we have:

∂Q
∂β0

= −2
∑

(Yi − β0 − β1Xi)
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Cont’d

•
∂Q
∂β1

= −2
∑

Xi(Yi − β0 − β1Xi)

• We can expand the equations and have:∑
Yi = nβ̂0 + β̂1

∑
Xi (2)

∑
XiYi = β̂0

∑
Xi + β̂1

∑
X 2

i (3)
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Cont’d
• Solving the above simultaneously we have:

β̂0 = Ȳ − β̂1X̄

β̂1 = n ∑ XiYi − ∑ Xi
∑ Yi

n ∑ X 2
i − (∑ Xi)2

• The fitted values of Y is
Ŷi = β̂0 + β̂1Xi

• The residuals for observation i is the difference between actual
and its fitted value.

ei = Yi − Ŷi
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Sum of Squares
• The total sum of squares denoted by SST

SST =
∑

(Yi − Ȳ )2

• The Sum of Squares due to regression:
SSR =

∑
(Ŷi − Ȳ )2

• The Sum of Squares due to errors:
SSE =

∑
(êi)2

• This implies that:
SST = SSE + SSR

• To proof: Expand ∑(Yi − Ȳ )2 by adding and subtracting Ŷi
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Goodness of Fit

• The R-squared of the regression sometimes called the coefficient
of determination.

R2 = SSR
SST = 1 − SSE

SST

• R2 is the fraction of sample variation in Y that is explained by X.

• When interpreting R2 we multiply by 100. R2 is the
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Gauss Markov Theorem

• Under the assumptions of Simple Linear Regression, the least
square estimators β̂0 and β̂1 are unbiased and have a minimum
variance among all linear unbiased estimators of β0 and β1.

• Thus β̂0 and β̂1 are said to be BLUE.
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Linear Estimators

• The least squares intercept and the slope are linear estimators in
the sense that they are linear function of Yi

• Consider:

β̂1 =
∑(Yi − Ȳ )∑(Xi − X̄ )2

• can be written as:
β̂1 =

∑
miYi

where mi = (Xi −X̄)∑
(Xi −X̄)2 and ∑ mi = 0 and summixi = 1
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Unbiasedness of Estimators
•

E [β̂0] = E [Ȳ − β̂1X̄ ]
= β̂0 + β̂1X̄ − β̂1X̄
= β̂0

(4)

•

E [β̂1] =
∑

miE [Yi ]
= mi(β0 + β1Xi)
= β1

(5)
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Variances of Estimators

•

Var(β̂1) = Var(
∑

miYi)
=

∑
m2

i Var(Yi) +
∑ ∑

kikjcov(Yi , Yj)

= σ2
∑(Xi − X̄ )2∑(Xi − X̄ )4

= σ2∑(Xi − X̄ )2

(6)
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Cont’d

•

Var(β̂0) = Var(Ȳ ) + X̄Var(β1) − 2X̄Cov(Ȳ , β1)

= σ2

n + X̄ 2 σ2∑(Xi − X̄ )2

= σ2(1
n + x2∑(Xi − X̄ )2

)

(7)
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Covariances

• The covariance between β0 and β1 is

•

Cov(β0, β1) = Cov(Ȳ , β1) − X̄Var(β1)

= − X̄σ2∑(Xi − X̄ )2

(8)
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Inference for β1

• We test the hypothesis concerning β1:
H0 : β1 = 0 vs H1 : β1 ̸= 0

• The sampling distribution of β̂1 refers to the different values of
β̂1 that would be obtained with repeated sampling when the
levels of the predictor X are held constant from sample to
sample

• An estimate for σ2 is:
σ2 = SSE

n − 2
thus

S2(β̂1) = MSE∑(X1 − X̄ )2
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Cont’d
• If Yi are normally distributed then the distribution of β̂1 is

normal since β̂1 = ∑ miYi and a linear combination of
independent random variables are also normally distributed then:

β̂1 ∼ N(β1,
σ2∑(Xi − X̄ )2

)

• The (1 − α)100

β̂1 ± t(1− α
2 ),n−2

√√√√ MSE∑(Xi − X̄ )2

• To test the hypothesis H0 : β1 = c the test statistic is:

t = β1 − c√
MSE∑
(Xi −X̄)2Dr. Mutua Kilai | Analysis of General Linear Model 22/57



Inference for β0

• The sampling distribution of β0 is:

β̂0 ∼ N(β0, σ2(1
n + x̄2∑(xi − x̄)2 ))

• The (1 − α)100% CI for β0 is

β̂0 ± t(1− α
2 ),n−2

√
S2(β̂0)

• To test the hypothesis To test the hypothesis H0 : β0 = c the
test statistic is:

t = β0 − c√
S2(β̂0)
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Example 1: US Consumption Expenditure

• In fpp3 package in R, a data set named us_change shows a time
series of quarterly percentage changes (growth rates) of real
personal consumption expenditure, y and real personal
disposable income x for the US from 1970 Q1 to 2019 Q2.
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EDA

library(plotly)
library(fpp3)
library(tidyverse)
library(knitr)
library(pander)
library(performance)
library(GGally)
us_change %>%

pivot_longer(c(Consumption, Income), names_to = "Series") %>%
autoplot(value) + theme_bw()+
labs(y = "% Change", x = "Time")
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Cont’d

A scatter plot of consumption changes against income changes is
shown in Figure 2.

us_change |>
ggplot(aes(x = Income, y = Consumption)) +
labs(y = "Consumption (quarterly % change)",

x = "Income (quarterly % change)") +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_bw()
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Cont’d
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Figure 2: Scatterplot with Fitted Line
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Model Fitting
• The model can be fitted using:

library(broom)
library(fpp3)
model <- lm(Consumption ~ Income, data = us_change)
kable(tidy(model))

term estimate std.error statistic p.value
(Intercept) 0.5445419 0.0540284 10.07881 0
Income 0.2718329 0.0467285 5.81728 0

• The fitted equation is:
Ŷ = 0.545 + 0.272X
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ANOVA

library(broom)
library(fpp3)
model <- lm(Consumption ~ Income, data = us_change)
kable(tidy(anova(model)))

term df sumsq meansq statistic p.value
Income 1 11.80141 11.8014130 33.84075 0
Residuals 196 68.35183 0.3487338 NA NA
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Confidence Interval

library(broom)
library(fpp3)
model <- lm(Consumption ~ Income, data = us_change)
kable(confint(model))

2.5 % 97.5 %
(Intercept) 0.4379903 0.6510935
Income 0.1796776 0.3639881
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Labwork One

Consider the data frame named marketing in the datarium package
containing the impact of three advertising medias (youtube, facebook
and newspaper) on sales. We want to fit a SLR to see the impact of
advertising budget spent on youtube on sales.

i. Create a visualization for the two variables

ii. Fit a SLR model

iii. Obtain the 95% confidence interval and the ANOVA table for
the model

iv. Interpret the results
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Multiple Linear Regression
• The general multiple linear regression model can be written as:

Y = β0 + β1X1 + ... + βkXk + ϵ

• Where β0 is the intercept
β1, ..., βk are the slope parameters associated with x1, ..., xk

• Consider the following multiple regression model:
Yi = β0 + β1Xi1 + β2Xi2 + ... + βpXi ,p−1 + ϵi

• The model can be written using vectors and matrices as:
Y = Xβ + ϵ
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OLS Estimation
• Y = n × 1 vector of response values β = p × 1 vector of

regression parameters X = n × p matrix of known constants
ϵ = n × 1 vector of iid error terms

• Define the best estimate of β as that which minimizes the SSE
ϵ′ϵ

∑
ϵ2

i = ϵ′ϵ

= (Y − Xβ)′(Y − Xβ)
(9)

• Differentiate w.r.t β and equate to zero and have:

Q = (Y − Xβ)′(Y − Xβ) = Y ′Y − 2Y ′Xβ + β′X ′Xβ
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Cont’d
•

∂Q
∂β

= 2X ′Xβ − 2Y ′X

• Equating to zero we have:

−2X ′Y = −2X ′Xβ

• Solving for β we get:

β̂ = (X ′X )−1X ′Y

Dr. Mutua Kilai | Analysis of General Linear Model 34/57



Cont’d

• The fitted values are given as:

Ŷi = β̂0 + β̂1Xi1 + ... + ˆβp−1Xi ,p−1

• Residuals are given by:

ei = Yi − Ŷi
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Inference in MLR

• If the model Y = Xβ + ϵ is correct, the expectation of Y is Xβ
and the expectation of β is:

E [β̂] = [(X ′X )−1X ′]E [Y ]
= [(X ′X )−1X ′]Xβ

= β

(10)

Dr. Mutua Kilai | Analysis of General Linear Model 36/57



Variance

Var(β) = [(X ′X )−1]Var(Y )[(X ′X )−1X ′]′

= [(X ′X )−1X ′]Iσ[(X ′X )−1X ′]′

= σ2(X ′X )−1
(11)
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ANOVA Table

Source df SS MSS
Regression p-1 SSR MSR
Error n-p SSE MSE
Total n-1 SST
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Coefficient of Multiple Determination

•
R2 = SSR

SST
It measures the amount of variation in Y explained by the
independent variables.

• The adjusted R2 is given by:

R2
α = 1 − (n − 1)SSE

(n − p)SST

• It adjusts the R2 for the number of predictors in the model.
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Hypothesis testing for individual regressors
• Determine the null and alternative hypothesis
• Specify the test statistic and its distribution if H0 is true
• Select α and determine the rejection region
• Calculate the sample value of test statistic and desired p-value
• State your conclusion

The hypothesis is
H0 : βk = 0 vs H1 : βk ̸= 0

The test statistic is:

t = βk

se(βk) ∼ tn−p
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Global test

This is an overall test for the regression model. It investigates the
possibility that all the regression coefficients are equal to zero.

H0 : β1 = ... = βk = 0 vs Ha : βj ̸= 0

The test statistic is the F -statistic given by

F = MSR
MSE
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Assumptions of Multiple Linear Regression

Dr. Mutua Kilai | Analysis of General Linear Model 42/57



Linearity

• There is a linear relationship between the dependent variable and
each independent variable

• Linearity may be evaluated by constructing a scatter diagram for
each independent variable and examine the diagrams

• Linearity can also be assessed graphically by constructing
residual plots. Constructed by plotting residuals against the
fitted values and this should exhibit no pattern
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Homoscedasticity

• The variation in the residuals is the same for all fitted values of
Y.

• The formal test for homoscedasticity is the Breusch Pagan test
and the hypothesis is:
H0: Constant variance
Ha: Heteroscedasticity
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Normality of residuals

• Residuals are normally distributed with a mean of zero. The
assumption is necessary for the validity of the inferences that we
make based on the global and individual hypothesis tests

• The formal test for the normality of residuals is the Shapiro-Wilk
test. The hypothesis tested is:
H0: Normality of residuals Ha: Residuals not normally distributed
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Multicollinearity

• This exists when the independent variables are correlated.

• If an independent variable is highly correlated with other
variables in the model should be removed.

• To assess the degree to which independent variables are
correlated we compute the VIF. A VIF greater than 10 is
unsatisfactory.
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Autocorrelation

• Successive residuals should be independent implying that there is
no pattern in the residuals.

• When successive residuals are correlated we refer to the
condition as autocorrelation.

• The formal test is the Durbin Watson test
H0: No Autocorrelation
Ha: Autocorrelation
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Example in R

• We fit a multiple linear regression for US consumption given by:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4

Where:
- Y is the percentage change in real personal consumption
expenditure - X1 is the percentage change in real personal
disposable income - X2 is the percentage change in industrial
production - X3 is the percentage change in personal savings -

X4 is the change in unemployment rate
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Fitting the model

library(fpp3)
library(broom)
model2 <- lm(Consumption ~ Income + Production +

Unemployment + Savings, data = us_change)
kable(tidy((summary(model2))))

term estimate std.error statistic p.value
(Intercept) 0.2531051 0.0344704 7.342673 0.0000000
Income 0.7405835 0.0401150 18.461493 0.0000000
Production 0.0471726 0.0231420 2.038397 0.0428744
Unemployment -0.1746853 0.0955107 -1.828959 0.0689490
Savings -0.0528901 0.0029241 -18.087537 0.0000000
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Testing the Assumptions

Normality

library(fpp3)
library(broom)
library(performance)
model2 <- lm(Consumption ~ Income + Production +

Unemployment + Savings, data = us_change)
check_normality(model2)

## Warning: Non-normality of residuals detected (p < .001).
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Autocorrelation

library(fpp3)
library(broom)
library(performance)
model2 <- lm(Consumption ~ Income + Production +

Unemployment + Savings, data = us_change)
check_autocorrelation(model2)

## OK: Residuals appear to be independent and not autocorrelated (p = 0.120).
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Homoscedasticity

library(fpp3)
library(broom)
library(performance)
model2 <- lm(Consumption ~ Income + Production +

Unemployment + Savings, data = us_change)
check_heteroscedasticity(model2)

## Warning: Heteroscedasticity (non-constant error variance) detected (p = 0.001).
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Multicollinearity

library(fpp3)
library(broom)
library(performance)
model2 <- lm(Consumption ~ Income + Production +

Unemployment + Savings, data = us_change)
check_collinearity(model2)
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Cont’d

## # Check for Multicollinearity
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## Income 2.67 [2.18, 3.37] 1.63 0.37 [0.30, 0.46]
## Production 2.54 [2.08, 3.19] 1.59 0.39 [0.31, 0.48]
## Unemployment 2.52 [2.06, 3.17] 1.59 0.40 [0.32, 0.48]
## Savings 2.51 [2.05, 3.15] 1.58 0.40 [0.32, 0.49]
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Linearity

library(fpp3)
library(GGally)
us_change |>

ggpairs(columns = 2:6)
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Cont’d

Corr:

0.384***

Corr:

0.529***

Corr:

0.269***

Corr:

−0.257***

Corr:

0.720***

Corr:

−0.059

Corr:

−0.527***

Corr:

−0.224**

Corr:

−0.768***

Corr:
0.106
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Thank You!
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